Database Design With Object Data Modeling

CHAPTER SIX

DATABASE DESIGN WITH OBJECT DATA MODELING

6.1 Overview

This chapter applies the syntaxes shown in chapter (5) in the trading company application, which contains employees' and customers' data. At the same time there is a comparison to show the main differences between using object modeling approaches, and without using it,.

6.2 Object Relational DB Application

The applications have focused on accessing and modifying corporate data that is stored in tables composed of native SQL data types such as INTEGER, NUMBER, DATE, and CHAR. Oracle is not supported only for these native types, but also for new ‘object’ data types [5].

[image: image1.png]EMPLOYEE PHONES+EMAIL ADDRESS

taff No. Name Tobile Tel Email Address
20060001 [Anwar Dawoud OSIRATIILL | 2835719 ‘anw_daw@hotmail.com

[20060002 [shumed Dalo I TmedZ000@yahoo.com

[image: image2.png]Employee NO.

Name rlamy [iohamad [ragramy

Date Of Birth Place Of Birth

Sex Marital Status

Employee> [Nationality

Department Position

Mobile NO. Phone NO.

[— street

Email Address

SER[e[E[R] v

Figure 6.1 and figure 6.2 explain the entitys relationship diagram (ER diagram) of trading company application.

The new objects in this application are name_ty, birth_ty, address_ty, and phone_ty as shown in figure 6.3 .

[image: image3.png]INSERT PROCESS

QUERY DELETE UPDATE SERT

Customer No. [20043854

Neme fiaid insen i
Dateorsieth [03/03/1578 Place ofieth palistine
Customer1d [785544511 e

MobileNo. [35335477551 Home No. [3557774

aty fefkosa street. Flomed Koy

Emai Address] ra i_khdair@hotmail.com

Good Serial Good Name GoodPrice _Date Off Sale
[120002351 1444 eyboard 21/08/2004 ’_

pizisssaa [ouse prros72008

[I "
SEZEeRR] |

Figure 6.3 New DataTypes(Objects) that used in this Application
As explained in chapter 5 an object type has attributes of various types, analogous to columns of a table.
The goal of using these objects is structure tables, to be more readable, usable, and understandable, also to reduce the size of the code that reduces the time for design and the time for executing the application.

Figure 6.4 and 6.5 shows the differences between the same table before and after using objects.

The following tables explain description, data type, and constraints for each attribute in types that used in this application.

	Name_ty Type

	Field
	Description
	Data Type
	Constraints

	Fname
	First name
	Varchar2(25)
	--

	Mname
	Middle name
	Varchar2(25)
	--

	Lname
	Last name
	Varchar2(25)
	--

	Birth_ty Type

	Field
	Description
	Data Type
	Constraints

	DOB
	Data of birth
	date
	--

	POB
	Place of birth
	Varchar2(25)
	--

	Address_ty Type

	Field
	Description
	Data Type
	Constraints

	City
	Name of city
	Varchar2(25)
	--

	Street
	Name of the street
	Varchar2(25)
	--

	Phone_ty Type

	Field
	Description
	Data Type
	Constraints

	Mobile
	Employee mobile
	Varchar2(13)
	--

	Home
	Employee home phone
	Varchar2(13)
	--

This application consists of the tables: nationality, position, department, goods, employee, and customer. Also the following tables explain description, data type, and constraints for each attribute in these tables:
	Nationality Table

	Field
	Description
	Data Type
	Constraints

	Nationality_id
	Nationality id
	Number(2)
	PK

	Nationality name
	Nationality name
	Varchar2(25)
	

	Position Table

	Field
	Description
	Data Type
	Constraints

	Position_id
	Position id
	Number(2)
	PK

	Position_name
	Position name
	Varchar2(25)
	

	Department Table

	Field
	Description
	Data Type
	Constraints

	Department _id
	Department id
	Number(2)
	PK

	Department _name
	Department name
	Varchar2(25)
	

	Goods Table

	Field
	Description
	Data Type
	Constraints

	Cus_no
	Customer number
	Number(9)
	FK

	Good_serial
	Serial number
	Number(15)
	PK

	Good_name
	Good name
	Varchar2(25)
	

	Good_price
	Good price
	Number(8)
	

	Good_sale_date
	Date of sale
	Date
	

	Employee Table

	Field
	Description
	Data Type
	Constraints

	Emp_no
	Employee number
	Number(9)
	PK

	Emp_name
	Employee name
	Name_ty
	

	Emp_birth
	Employee DOB & POB
	Birth_ty
	

	Nationality_id
	Nationality id
	Number(2)
	FK

	Emp_id
	Employee id
	Number(9)
	

	Position_id
	Position id
	Number(2)
	FK

	Department_id
	Employee Department
	Number(2)
	FK

	Emp_sex
	Employee sex
	Number(1)
	

	Emp_marital_status
	Employee marital status
	Number(1)
	

	Emp_phone
	Employee phones
	Phone_ty
	

	Emp_Email
	Employee Email address
	Varchar2(25)
	

	Emp_address
	Employee address
	Address_ty
	

	Customer Table

	Field
	Description
	Data Type
	Constraints

	Cus_no
	Customer number
	Number(9)
	PK

	Cus_name
	Customer name
	Name_ty
	

	Cus_birth
	Customer DOB & POB
	Birth_ty
	

	Nationality_id
	Nationality id
	Number(2)
	FK

	Cus_id
	Customer id
	Number(9)
	

	Cus _sex
	Customer sex
	Number(1)
	

	Cus _phone
	Customer phones
	Phone_ty
	

	Cus _Email
	Customer Email address
	Varchar2(25)
	

	Cus _address
	Customer address
	Address_ty
	

The following figure shows the new data type that is used in employee and customer table.

6.3 The Object Definition Language

Now it is possible to apply the Object Definition Language (ODL) in this Application.

6.3.1 Create objects in the database.

The following SQL statements create Address_ty, Birth_ty, Name_ty, and Phone_ty as objects or as new defined type. After that, it is possible to use these new defined types as an attribute datatype.
	

	Create Type Address_Ty As Object (

	
	City
	Varchar2(25),

	
	Street
	Varchar2(25));

	

	

	Create Type Birth_Ty As Object (

	
	DOB
	Date,

	
	POB
	Varchar2(25));

	

	

	Create Type Name_Ty As Object (

	
	Fname
	Varchar2(25),

	
	Mname
	Varchar2(25),

	
	Lname
	Varchar2(25));

	

	

	Create Type Phone_Ty As Object (

	
	Mobile
	Varchar2(13),

	
	Home
	Varchar2(13));

	

6.3.2 Create tables in the database.

The application consists of nationality, position, department, and goods tables that created by the normal way (without new defined type).
	

	Create Table Nationality (

	
	Nationality_Id
	Number(2)Primary Key,

	
	Nationality_Name
	Varchar2(25));

	

	

	Create Table Position (

	
	Position_Id
	Number(2)Primary Key,

	
	Position_Name
	Varchar2(25));

	

	

	Create Table Department (

	
	Department_Id
	Number(2)Primary Key,

	
	Department_Name
	Varchar2(25));

	

	

	Create Table Goods (

	
	Cus_No
	Number(9),

	
	Good_Serial
	Number(15) Primary Key,

	
	Good_Name
	Varchar2(25),

	
	Good_Price
	Number(8),

	
	Good_Sale_Date
	Date,

	
	Constraint Good_Cus_Fk Foreign Key(Cus_No)
References Customer(Cus_No));

	

Also, the application consists of employee and customer tables that involve new defined types as an attributes datatypes.
As shown in creation of employee table, using of objects address_ty, birth_ty, name_ty, and phone_ty reduce the number of the SQL statements, structure tables, and make it more readable and understadable.

	

	Create Table Employee (

	
	Emp_No
	Number(9)Primary Key,

	
	Emp_Name
	Name_Ty,
	

	
	Emp_Birth
	Birth_Ty,
	

	
	Emp_Id
	Number(9),

	
	Emp_Sex
	Number(1),

	
	Emp_Marital_Status
	Number(1),

	
	Emp_Phone
	Phone_Ty,

	
	Emp_Email
	Varchar2(25),

	
	Emp_Address
	Address_Ty,

	
	Nationality_Id
	Number(2),

	
	Position_Id
	Number(2),

	
	Department_Id
	Number(2),

	
	Constraint Emp_Nat_Fk Foreign Key(Nationality_Id)
References Nationality(Nationality_Id),

	
	Constraint Emp_Pos_Fk Foreign Key(Position_Id)
References Position(Position_Id),

	
	Constraint Emp_Dep_Fk Foreign Key(Department_Id)
References Department(Department_Id));

	

Now if employee table does not contain new defined types as attributes datatypes (objects), the SQL Statements will be unreadable, ununderstadable, and the number of it will be more, as the following:

	

	Create Table Employee (

	
	Emp_No
	Number(9)Primary Key,

	
	Fname
	Varchar2(25),
	

	
	Mname
	Varchar2(25),
	

	
	Lname
	Varchar2(25),
	

	
	DOB
	Date,
	

	
	POB
	Varchar2(25),
	

	
	Emp_Id
	Number(9),

	
	Emp_Sex
	Number(1),

	
	Emp_Marital_Status
	Number(1),

	
	Mobile
	Varchar2(13),

	
	Home
	Varchar2(13),

	
	Emp_Email
	Varchar2(25),

	
	City
	Varchar2(25),

	
	Street
	Varchar2(25),

	
	Nationality_Id
	Number(2),

	
	Position_Id
	Number(2),

	
	Department_Id
	Number(2),

	
	Constraint Emp_Nat_Fk Foreign Key(Nationality_Id)
References Nationality(Nationality_Id),

	
	Constraint Emp_Pos_Fk Foreign Key(Position_Id)
References Position(Position_Id),

	
	Constraint Emp_Dep_Fk Foreign Key(Department_Id)
References Department(Department_Id));

	

Also as seen in creation of customer table, use of objects address_ty, birth_ty, name_ty, and phone_ty reduce the number of SQL statements, structure tables, and make it more readable and understadable.

	

	Create Table Customer (

	
	Cus_No
	Number(9)Primary Key,

	
	Cus_Name
	Name_Ty,
	

	
	Cus_Birth
	Birth_Ty,
	

	
	Cus_Id
	Number(9),

	
	Cus_Sex
	Number(1),

	
	Cus_Phone
	Phone_Ty,

	
	Cus_Email
	Varchar2(25),

	
	Cus_Address
	Address_Ty);

	

If customer table does not contain new defined types as attributes datatypes (objects), the SQL statements will be unreadable, ununderstadable, the number of it will be more, and the run time will be more as the following:

	

	Create Table Customer (

	
	Cus_No
	Number(9)Primary Key,

	
	Fname
	Varchar2(25),
	

	
	Mname
	Varchar2(25),
	

	
	Lname
	Varchar2(25),
	

	
	DOB
	Date,
	

	
	POB
	Varchar2(25),
	

	
	Cus_Id
	Number(9),

	
	Cus_Sex
	Number(1),

	
	Mobile
	Varchar2(13),

	
	Home
	Varchar2(13),

	
	Cus_Email
	Varchar2(25),

	
	City
	Varchar2(25),

	
	Street
	Varchar2(25));

	

6.3.3 Create views in the database.

It is possible to present logical subsets or combinations of data by creating views from tables. This application contains some veiws, the following view is one of it. As seen in creation of employee_vw view, using of objects name_ty, and birth_ty reduce the number of the SQL statements, structure view, and make it more readable and understadable.

	

	Create Or Replace View Employee_Vw As

	
	Select
	E.Emp_No,

	
	
	E.Emp_Name,
	

	
	
	E.Emp_Birth,
	

	
	
	N.Nationality_Name,

	
	
	P.Position_Name,

	
	
	D.Department_Name

	
	From
	Employee E , Nationality N , Position P , Department D

	
	Where
	N.Nationality_Id = E.Nationality_Id
	And

	
	
	P.Position_Id = E.Position_Id
	And

	
	
	D.Department_Id = E.Department_Id;
	

	

When using the normal way (the employee table without new defined type) the view will be more unreadable, ununderstandable, and the number for its SQL statements will be more, as in the following example:

	

	Create Or Replace View Employee_Vw As

	
	Select
	E.Emp_No,

	
	
	E.Fname,
	

	
	
	E.Mname,
	

	
	
	E.Lname,
	

	
	
	

	
	
	

	
	
	E.DOB
	

	
	
	E.POB
	

	
	
	N.Nationality_Name,

	
	
	P.Position_Name,

	
	
	D.Department_Name

	
	From
	Employee E , Nationality N , Position P , Department D

	
	Where
	N.Nationality_Id = E.Nationality_Id
	And

	
	
	P.Position_Id = E.Position_Id
	And

	
	
	D.Department_Id = E.Department_Id;
	

	

6.3.4 Create procedures in the database.

Procedures are defined by a routine name and the parameters to be passed in and out of the routine. The parameters may be native SQL data types like employee_no or new defined type like employee_name and employee_birth. As seen in reation of new_employee procedure, using of objects name_ty, and birth_ty reduce the size of the code, structure procedure, and make it more readable and understandable.

	

	Create Or Replace Procedure New_Employee

	(
	Employee_No
	In
	Number,
	

	
	Employee_Name
	In
	Name_Ty,
	

	
	Employee_Birth
	In
	Birth_Ty)
	

	As

Begin

	
	Insert Into Employee(Emp_No,Emp_Name,Emp_Birth)

	
	Values(Employee_No,Employee_Name,Employee_Birth);

	End;

	

To execute the last procedure it must be written in a SQL statement like the following.

	
	

	Execute New_Employee(
	20060009,

	
	Name_Ty('Ahmed','R','Dawoud'),

	
	Birth_Ty('11-Nov-1997','Palestine'));

When using the normal way (the employee table without new defined type) the procedure will be more unreadable, ununderstandable, and the size for its code will be more, as in the following example:

	

	Create Or Replace Procedure New_Employee

	(
	Employee_No
	In
	Number,
	

	
	Employee_Fname
	In
	Varchar2,
	

	
	Employee_Mname
	In
	Varchar2,
	

	
	Employee_Lname
	In
	Varchar2,
	

	
	Employee_Dob
	In
	Date,
	

	
	Employee_Pob
	In
	Varchar2
)

	As

Begin

	
	Insert Into Employee(Emp_No,Fname,Mname, Lname, Dob, Pob)

	
	Values(

	Employee_No,Employee_Fname,Employee_Mname, Employee_Lname, Employee_Dob ,Employee_Pob);

	End;

	

To execute the last procedure it must be written in a SQL statement like the following.

	
	

	Execute New_Employee(
	20060009, 'Ahmed','R','Dawoud', '11-Nov-1997',

	
	'Palestine');

6.3.5 Create functions in the database.

A function may declare a list of parameters, and it must return one value. The following function uses the birth date as input, and it returns the age of employee as output. As seen in creation of age_employee_no function, use of object birth_ty structure function, and makes the SQL statements more readable and understadable.

	

	Create Or Replace Function Age_Employee_No (X Number) Return Number
Is

	
	I
	Date;
	
	

	Begin

	
	Select

From

Where

Return
	E.Emp_Birth.Dob Into I

Employee E

Emp_No=X;

(Sysdate-I)/365;

	End;

	

When using the normal way (the employee table without new defined type) the function will be more unreadable, and ununderstandable, as in the following example:

	

	Create Or Replace Function Age_Employee_No (X Number) Return Number

Is

	
	I
	Date;
	
	

	Begin

	
	Select

From

Where

Return
	Dob Into I

Employee

Emp_No=X;

(Sysdate-I)/365;

	End;

	

6.3.6 Create triggers in the database.

A trigger is a message or something that accomplishes the user's a tension.

	

	Create Or Replace Trigger Emp_Trigger

Before Insert Or Update Or Delete On Employee

Begin

	
	If Deleting Then

	
	
	Raise_Application_Error(-20502,'Again');

	
	End If;

	End;

	

As seen when the deletion process occurs this message will be appear.

6.4 Object Query Language

After finishing of ODL, it is possible to apply the Object Query Language (OQL) in application.

6.4.1 Insert a row in the table
To insert a row into the employee table there exists two cases. The first case is when there are some attributes with new defined data type, this makes the insert process more readable and understandable as in the following example.

	

	Insert Into Employee(Emp_No, Emp_Name, Emp_Birth)

	Values (
	20043315,

	
	Name_Ty('Anwar','M','Dawoud'),

	
	Birth_Ty('12-Nov-82','Palistine'));

	

The second case is when using the normal way (the employee table without new defined type) the insert statement will be more ambiguous, unreadable, and ununderstandable, as in the following example:

	

	Insert Into Employee (Emp_No, Fname, Mname, Lname, Dob, Pob)

	Values (
	20043315, 'Anwar', 'M', 'Dawoud', '12-Nov-82', 'Palistine');

	

6.4.2 Update a row in the table
To update a row into the employee table there are two cases. The first case is when there are some attribute with new defined data type, this makes the update process more readable and understandable as in the following example.

	

	Update
	Employee

	Set
	Emp_Name=Name_Ty('Ahmed','A','Dalo')

	Where
	Emp_No=20043815;

	

The second case is when using the normal way (the employee table without new defined type) the update statement will be more ambiguous, unreadable, and ununderstandable, as in the following example:

	

	Update
	Employee

	Set
	Fname='Ahmed', Mname='A', Lname='Dalo'

	Where
	Emp_No=20043815;

	

6.4.3 Delete a row in the table
To delete a row from the employee table there exist two cases. The first case is when there are some attribute with new defined data type, this makes the delete process more readable and understandable as in the following example.

	

	Delete
	From Employee

	Where
	Emp_Name=Name_Ty('Ahmed', 'R', 'Dawoud');

	

The second case is when using the normal way (the employee table without new defined type) the delete statement will be more ambiguous, unreadable, and ununderstandable, as in the following example:

	

	Delete
	From Employee

	Where
	Fname='Ahmed'
	And

	
	Mname='R'
	And

	
	Lname='Dawoud';
	

	

6.4.4 Select rows from the table
To select some rows from the employee table there exist two cases. The first case is when there are some attribute with new defined data type. This makes the select process more readable and understandable as in the following example.

	

	Select
	Emp_No,Emp_Name

	From
	Employee;

	

The second case is when using the normal way (the employee table without new defined type) the select statement will be more ambiguous, unreadable, and ununderstandable, as in the following example:

	

	Select
	E.Emp_No, E.Fname, E.Mname, E.Lname

	From
	Employee E;

	

In this application there are some graphical user interfaces. Figures 6.7 and 6.8 show graphical user interfaces for emplyee and customer tables.

Throughout the last graphical user interfaces it could be generated as a new number of every employee and customer. After that it could be added some information a bout them such as name, birth of date, and place of birth.
The following report show employee number, name, phone, and email.

Figure 6.9 Report Showing Employee Name, Phone, and Email

Comparison of SQL statements for trading company database design has been listed for with objects and without objects respectively as following :

	Number of

SQL Statements
	DDL Statements
	DML Statements

	
	Tables
	Procedures
	Functions
	Select
	Insert
	Update
	delete

	With Objects
	24
	8
	8
	4
	8
	5
	4

	Without Objects
	34
	11
	10
	6
	14
	8
	6

	Improvement
	30%
	27%
	20%
	33%
	43%
	38%
	34%

6.5 Summary

The main differences between using Object approaches and without have been declared using the application of trading company.
As seen in this chapter using the ORDBMS concepts make the application more usable, readable, and reduce the size of the code.

Customer Table

Figure 6.8 Graphical user Interface for Customer Table

Cus_Address

CUSTOMER TABLE AFTER

USING OBJECTS

CUSTOMER TABLE BEFORE USING OBJECTS

EMPLOYEE TABLE AFTER

USING OBJECTS

Figure 6.6 New DataType used in Employee & Customer Tables

EMPLOYEE TABLE BEFORE USING OBJECTS

FK

PK

CUSTOMER

Cus_no

Cus _name

Cus_birth

Cus_id

Cus_sex

Cus_phone

Cus_Email

Cus_address

GOODS

Cus_no

Cus _name

Cus_birth

Cus_id

Cus_sex

Cus_phone

Cus_Email

Cus_address

Figure 6.2 The Customer Entity Relationship Diagram

Cus_address

Emp_birth

Emp_name

Emp_no

Emp_name

Emp_birth

Nationality_id

Emp_id

Position_id

Department_id

Emp_sex

Emp_martial_status

Emp_phone

Emp_Email

Emp_address

Emp_address

Cus_no

Good_serial

Good_name

Good_price

Good_sale_date

Figure 6.7 Graphical user Interface for Employee Table

Cus_no

Cus _name

Cus_birth

Cus_id

Cus_sex

Cus_phone

Cus_Email

Cus_address

New Data Types

Employee Table

Emp_no

Fname

Mname

Lname

DOB

POB

Nationality_id

Emp_id

Position_id

Department_id

Emp_sex

Emp_martial_status

Phone

Home

Cus_Email

City

Street

Name_ty

Phone_ty

Address_ty

Birth_ty

Figure 6.4 The Employee Table Before And After Using Objects

Cus_phone

Emp_no

Emp_name

Emp_birth

Nationality_id

Emp_id

Position_id

Department_id

Emp_sex

Emp_martial_status

Emp_phone

Emp_Email

Emp_address

Cus_no

Fname

Mname

Lname

DOB

POB

Cus_id

Cus_sex

Phone

Home

Cus_Email

City

Street

Cus_birth

Figure 6.5 The Customer Table Before And After Using Objects

Emp_no

Emp_name

Emp_birth

Nationality_id

Emp_id

Position_id

Department_id

Emp_sex

Emp_marital_status

Emp_phone

Emp_Email

Emp_address

Cus_name

Figure 6.1 The Employee Entity Relationship Diagram

DEPARTMENT

POSITION

NATIONALITY

EMPLOYEE

Nationality_id

Nationality_name

Emp_phone

FK

FK

FK

PK

PK

PK

Department_id

Department_name

Position_id

Position_name

NEW DATA TYPES

Address_ty

(Object)

Birth_ty

(Object)

Name_ty

(Object)

Phone_ty

(Object)

PAGE
89

